

Chemically Amplified EUV Resist and Materials Development for 22 nm Half Pitch and Beyond

Makoto Shimizu JSR Corporation

ımec

High Resolution Material

All images are single point in the field exposed with dipole-30X at a dose of 33mJ/cm² and

Ref. Tom Wallow et al, SPIE2012 8322-54

- > JSR chemically amplified resist (CAR) achieved sub 18 nm hp resolution at LBNL MET
- > LWR and Sensitivity improvement is required

2012 International Symposium on Extreme Ultraviolet Lithopraphy

How to design EUV resist

A. Vaglio Pret, K. Garidis, R. Gronheid, J. Biafore

- Less photons are available for patterning at EUV compared to ArF lithography
- EUV resist development should consider materials that use EUV photon effectively in resist design

High Resolution Resist Design

High Absorbance EUV Resist: RLS Performance

Resin	Absorbance Unit	22nm HP	20nm HP	19nm HP
Low Absorbance	Standard	Sen ::17.2mJ/cm² LWR:5.8nm	Sen.:17 2mJ/cm² LWR:5.5nm	Sen.:17.2mJ/cm²
High Absorbance	25 % Up	Sen.:15.0mJ/cm² LWR:5.5nm	Sen.:15.0md/pm² LWR:5.8nm	Sen :15.0mJ/cm²

LBNL MET, NA0.3, 18nm Dipole

- Increasing EUV resin absorbance improves resist sensitivity (13 %)
- Effect of increasing EUV absorbance and absorbance unit was investigated to balance RLS performance

High Absorbance EUV Resist: Effect of **Absorbance Unit**

	Standard Resin	Absorbance Resin-A	
Polymer Structure		Applied 3 rd unit in polymer	Protecting Group
Transparency @13.5nm (calculation, relative)	100	95	Group
Dill's C-parameter	0.04	0.05	
l :415 o 15 o man d'a man a 15 o a 15			Polar unit
Litho performance 26nmLS	10.1		
Eop LWR	7.7	7.1	Absorbance Unit

Courtesy of EIDEC

- > Higher EUV absorbance resist showed higher sensitivity
- > High absorbance resist showed higher Dill's C-parameter. It suggests that higher absorbance resin accelerate acid generation

LWR Mitigation Study: Mole Ratio of Absorbance Unit

	Absorbance Resin-A	Absorbance Resin-A'		
Polymer structure		Absorbance unit	a)	—Resin - A —Resin - A'
Transparency	Std	up	Rate	
@13.5nm (calculation, relative)	95	93.5	Dissolution F	
Dill's C-parameter	0.05	Under analysis	Solu	KrF Exposure
Litho performance 20nmLS Eop LWR	17.2 5.5	15.0 5.8		Dose (mJ/cm ²)

- Resin-A' having higher amount of absorbance unit showed higher absorbance at 13.5nm
- \triangleright Resin-A' showed higher R_{min} . R_{min} affects dissolution contrast

100

New High Absorbance Resin: **Control Dissolution Property**

	Absorbance Resin-A	New absorbance Resin-B
Polymer structure		
		Applied new 3 rd unit
Transparency @13.5nm (calculation, relative)	95	93.5
Tg	std	std + 20deg
Dill's C-parameter	0.05	Under analysis

: New Absorbance Unit

- Resin-B with new absorbance unit showed higher Tg and higher absorbance
- suppressed > Resin-B R_{min} and improved dissolution contrast

New High Absorbance Resist: RLS Performance

	Resin-A	Resin-B
Top view @25nmhp		
Dose to size (mJ/cm2)	11.4	13.4
LER (nm)	4.1	3.4
Top view @22nmhp		
Dose to size (mJ/cm2)	11.0	12.8
LER (nm)	4.4	3.9

NXE3100, NA0.25, Dipole60X

Summary

- Sensitivity and LWR improvements are significant challenges for 16 nm hp generation
 - High absorbance resin with different absorbance unit was developed and investigated for 22 nm patterning performance
 - High absorbance resin showed higher absorbance at EUV.
 Higher Dill's C-parameter for high absorbance resist suggests that high absorbance resin accelerate acid generation
 - Higher absorbance unit affects thermal properties and dissolution contrast
 - EUV resist containing high absorbance resin improved resist sensitivity
 - EUV resist with 2nd generation high absorbance resin achieved balanced RLS performance at 22 nm hp (Es = 12.8 mJ/cm²; LER = 3.9 nm) on NXE:3100

Acknowledgment

JSR gratefully thank imec and SEMATECH, for their close collaboration and giving us many evaluation opportunities.

- Tg measurement => Refraction index measurement

 Reference; Brainard, R. L. et al., Proc. SPIE, 2012, 8322-07
- Transmittance calculation under 13.5nm wavelength

 Reference; http://www.cxro.lbl.gov/

 CXRO at Lawrence Berkeley National Laboratory
- Dill's C parameter => Φacid

 Reference; Charles R. Szmanda. et al., J. Vac. Sci. Technol. B, 1999, 3356

$$\frac{dP(D)}{dD} = -CP(D) \Rightarrow P(D) = P_0 e^{-CD}$$
$$\Rightarrow A(D) = P_0 (1 - e^{-CD}),$$

Thank you for your attention !!

Materials Innovation

With chemistry, we can.